
DHRI_fundamentals_completecurriculum.md 1/18/2022

1 / 35

Before we begin: required software installations
Visual Studio Code (instructions: https://curriculum.dhinstitutes.org/installations/microsoft-visual-studio-
code/windows/)

For Windows users, install Git and Git Bash (instructions: https://curriculum.dhinstitutes.org/installations/git-
and-git-bash/windows/)

The following curriculum is adapted from https://curriculum.dhinstitutes.org/

What Is the Command Line?
If asked to show someone who has never seen a computer how to do something on your computer, many of
us would explain what a screen and a cursor are, and then show how to point and click on icons. This
approach relies on a graphical user interface, or GUI (pronounced “gooey!”). Today we’re going to explore
another way to make your computer do things: through the command line. Instead of pointing and clicking,
we’ll be typing in either git bash (Windows) or terminal (macOS) to tell the computer directly what task we’d
like it to perform.

The command line is a text-based way of interacting with your computer. You may hear it called different
names, such as the terminal, the shell, or bash. In practice, you can use these terms interchangeably. (If you're
curious, though, you can read more about them in the glossary.) The shell we use (whether terminal, shell, or
bash) is a program that accepts commands as text input and converts commands into appropriate operating
system functions.

The command line (of computers today) receives these commands as text that is typed in.

Plain text vs. formatted text

As scholars working with computers, we need to be aware of the ways plain text and formatted text differ.
Words on a screen may have hidden formatting. Many of us learned to use a word processor like Microsoft
Word and don't realize how much is going on behind the words shown on the screen. For the purposes of
communicating with the computer and for easier movement between different programs, we need to use text
without hidden formatting.

https://github.com/DHRI-Curriculum/glossary/blob/v2.0/terms/command-line.md

DHRI_fundamentals_completecurriculum.md 1/18/2022

2 / 35

Users with visual disabilities, click here to download the Word file.

If you ask the command line to read that file, this Word .docx file will look something like this

https://github.com/DHRI-Curriculum/command-line/raw/v2.0/files/WordProcessorExample.docx

DHRI_fundamentals_completecurriculum.md 1/18/2022

3 / 35

Users with visual disabilities, click here to download the text file.

Word documents which look like "just words!" are actually comprised of an archive of extensible markup
language (XML) instructions that only Microsoft Word can read. Plain text files can be opened in a number of
different editors and can be read within the command line.

Plain Text
For the purposes of communicating with machines and between machines, we need characters to be as
flexible as possible.

Plain text shows its cards—if it's marked up, the markup will be human readable. Plain text can be moved
between programs more fluidly and can respond to programmatic manipulations. Because it is not tied to a
particular font or color or placement, plain text can be styled externally.

A counterpoint to plain text is rich text (sometimes denoted by the Microsoft rich text format .rtf file
extension) or "enriched text" (sometimes seen as an option in email programs). In rich text files, plain text is
elaborated with formatting specific to the program in which they are made.

Plain text has two main properties in regard to rich text:

plain text is the underlying content stream to which formatting can be applied. Plain text is public,
standardized, and universally readable.

Default Recommendation for a Text Editor
For our workshops, we will be using Visual Studio Code. Not only is Visual Studio Code free and open source,
but it is also consistent across macOS, Windows, and Linux systems.

You will have downloaded Visual Studio Code according to the instructions on the installations page. We
won't be using the editor a lot in this tutorial, so don't worry about getting to know the editor now. In other
workshops we will discuss syntax highlighting and version control, which Visual Studio Code supports. For
now we will get back to working in the command line itself.

Evaluation
What is the difference between a plain text document and a rich text document? (Select all that apply)

Plain text contains no formatting, only line breaks and spacing.*
Plain text cannot be marked up.
Rich text is styled text, i.e., plain text completed by information such as font size, format, and colors.*
One can't determine whether there is a difference betweeen the two without looking at their content.

Why is the Command Line Useful?
Initially, for some of us, the command line can feel a bit unfamiliar. Why step away from a point-and-click
workflow? By using the command line, we move into an environment where we have more minute control
over each task we'd like the computer to perform. Instead of ordering your food in a restaurant, you're
stepping into the kitchen. It's more work, but there are also more possibilities.

https://raw.githubusercontent.com/DHRI-Curriculum/command-line/v2.0/files/PK.md
https://code.visualstudio.com/
https://github.com/DHRI-Curriculum/install/blob/v2.0/guides/visual-studio-code.md

DHRI_fundamentals_completecurriculum.md 1/18/2022

4 / 35

The command line allows you to...

Easily automate tasks such as creating, copying, and converting files.
Set up your programming environment.
Run programs you create.
Access the (many) programs and utilities that do not have graphical equivalents.
Control other computers remotely.

In addition to being a useful tool in itself, the command line gives you access to a second set of programs and
utilities and is a complement to learning programming.

What if all these cool possibilities seem a bit abstract to you right now? That's alright! On a very basic level,
most uses of the command line are about showing information that the computer has, or modifying or
making things (files, programs, etc.) on the computer.

In the next section, we'll make this a little more clear by getting started with the command line.

Getting to the Command Line

macOS
If you're using macOS:

1. Click the Spotlight Search button (the magnifying glass) in the top right of your desktop.

2. Type terminal into the bar that appears.

3. Select the first item that appears in the list.

4. When the Terminal pops up, you will likely see either a window with black text over white background
or colored text over a black background.

DHRI_fundamentals_completecurriculum.md 1/18/2022

5 / 35

Please note: You can change the color of your Terminal or BashShell background and text by selecting Shell
from the top menu bar, then selecting a theme from the menu under New Window.

Bonus points: if you really want to get the groove of just typing instead of pointing and clicking, you can hold
the command (⌘) key while and press space to pull up Spotlight search, start typing Terminal, and then
hit enter to open a terminal window. This will pull up a terminal window without touching your mousepad.
For super bonus points, try to navigate like this for the next fifteen minutes, or even the rest of this session—it
is tricky and sometimes a bit tiring when you start, but you can really pick up speed when you practice!

Windows
We won't be using Windows's own non-UNIX version of the command line. Instead, we will use Git Bash. If
you haven't installed it yet, you can follow these instructions. The reason we use Git Bash as the command line
on Windows is that it makes you able to run the same commands as you would on a computer running
macOS or Linux. Git Bash includes core utilities available on Linux that are not available on Windows.

1. Look for Git Bash in your programs menu and open.

2. If you can't find the git folder, just type git bash in the search box and select git bash when it
appears.

3. Open the program.

4. When the terminal pops up, you will likely see either a window with black text over white background
or colored text over a black background.You know you're in the right place when you see the $.

Note that the sign for you being in the right place might also be a % or a # depending on your operating system.

Bonus points: if you really want to get the groove of just typing instead of pointing and clicking, you can press
windows to open the Start menu, start typing git bash and then hit enter to open a git bash window. This
will pull up a command window without touching your mousepad.

https://github.com/DHRI-Curriculum/install/blob/v2.0/guides/git.md

DHRI_fundamentals_completecurriculum.md 1/18/2022

6 / 35

Command Prompt $
$, which we will refer to as the "command prompt," is the place you type commands you wish the computer
to execute. We will now learn some of the most common commands.

When you see the $, you're in the right place. As noted above, however, the sign varies somewhat between
systems, and sometimes the sign is a % or a #. We call the sign the command prompt; it lets us know the
computer is ready to receive a command.

In the following lessons, we will refer to the command prompt using a $. Just make a note now of your sign, if
it differs from the dollar sign. You will be able to follow along just fine as long as you understand that they all
are different ways of knowing that you are "at the command prompt."

Prefatory Pro Tips
Before we get started, I wanted to give you a couple of tips of things to keep in mind.

First, go slow at first and check your spelling! Keep this in mind! If at first something doesn't work, check your
spelling! Unlike in human reading, where letters operate simultaneously as atomistic symbols and as complex
contingencies (check Johanna Drucker on the alphabet), in coding, each character has a discrete function
including (especially!) spaces.

Second, keep in mind that the command line and file systems on macOS and Unix are usually pre-configured
as cAsE-pReSeRvInG—so capitalizations also matter when typing commands and file and folder names.

Third, while copying and pasting from this handy tutorial may be tempting to avoid spelling errors and other
things, we encourage you not to! Typing out each command will help you remember them and how they
work.

Now, we are ready to get started.

Navigation

Getting started: know thyself
You may also see your username to the left of the command prompt $. Let's try our first command. Type the
following and press enter on your keyboard:

$ whoami

The whoami command should print out your username. Congrats, you've executed your first command! This is
a basic pattern of use in the command line: type a command, press enter on your keyboard, and receive
output.

Orienting Yourself in the Command Line: Folders

https://genius.com/Johanna-drucker-from-a-to-screen-annotated

DHRI_fundamentals_completecurriculum.md 1/18/2022

7 / 35

OK, we're going to try another command. But first, let's make sure we understand some things about how
your computer's filesystem works.

Your computer's files are organized in what's known as a hierarchical filesystem. That means there's a top level
or root folder on your system. That folder has other folders in it, and those folders have folders in them, and
so on. You can draw these relationships in a tree:

The root or highest-level folder on macOS is just called /. We won't need to go in there, though, since that's
mostly just files for the operating system. On Windows, the root directory is usually called C:. (If you are
curious why C: is the default name on Windows, you can read about it here.)

Note that we are using the word "directory" interchangeably with "folder"—they both refer to the same thing.

OK, let's try a command that tells us where we are in the filesystem:

$ pwd

You should get output like /Users/your-username. That means you're in the your-username directory in
the Users folder inside the / or root directory. This directory is often called the "home" directory.

On Windows, your output would instead be C:/Users/your-username. The folder you're in is called the
working directory, and pwd stands for "print working directory." "Print" as a word can be somewhat
misleading. The command pwd won't actually print anything except on your screen. This command is easier to
grasp when we interpret "print" as "display."

Now we know "where" we are. But what if we want to know what files and folders are in the your-username
directory, a.k.a. the working directory? Try entering:

$ ls

You should see a number of folders, probably including Documents, Desktop, and so on. You may also see
some files. These are the contents of the current working directory. ls will "list" the contents of the directory
you are in.

http://www.todayifoundout.com/index.php/2015/04/c-drive-default-windows-based-computers-2

DHRI_fundamentals_completecurriculum.md 1/18/2022

8 / 35

Wonder what's in the Desktop folder? Let's try navigating to it with the following command:

$ cd Desktop

The cd command lets us "change directory." (Make sure the "D" in "Desktop" is capitalized.) If the command
was successful, you won't see any output. This is normal—often, the command line will succeed silently.

So how do we know it worked? That's right, let's use our pwd command again. We should get:

$ pwd
/Users/your-username/Desktop

Now try ls again to see what's on your desktop. These three commands—pwd, ls, and cd—are the most
commonly used in the terminal. Between them, you can orient yourself and move around.

One more command you might find useful is cd .. which will move you one directory up in the filesystem.
That's a cd with two periods after it:

$ cd ..

When you're done, come back to your "home" folder with

$ cd ~

(That's a tilde ~, on the top left of your keyboard.)

Evaluation
What command do you run if you are trying to identify where in the filesystem you are currently
located/working?

$ ls
$ pwd*
$ cd
$ whoami

When and why would you want to use the command line as opposed to your operating system's GUI?

Keywords
Do you remember the glossary terms from this section?

Filesystem
GUI

https://github.com/DHRI-Curriculum/glossary/blob/v2.0/terms/filesystem.md
https://github.com/DHRI-Curriculum/glossary/blob/v2.0/terms/gui.md

DHRI_fundamentals_completecurriculum.md 1/18/2022

9 / 35

Root

Creating Files and Folders

Creating a File
So far, we've only performed commands that give us information. Let's use a command that creates
something on the computer.

First, make sure you're in your home directory:

$ pwd
/Users/your-username

Let's move to the Desktop folder, or "change directory" with cd:

$ cd Desktop

Once you've made sure you're in the Desktop folder with pwd, let's try a new command:

$ touch foo.txt

The touch command is used to create a file without any content. This command can be used when you don’t
have any data yet to store in it.

If the command succeeds, you won't see any output. Now move the terminal window and look at your "real"
desktop, the graphical one. See any differences? If the command was successful and you were in the right
place, you should see an empty text file called foo.txt on the desktop. Pretty cool, right?

Handy Tip: Up Arrow
Let's say you liked that foo.txt file so much you'd like another! In the terminal window, press the up arrow
on your keyboard. You'll notice this populates the line with the command that you just wrote. You can hit
enter to create another foo.txt, (note - touch command will not overwrite your document nor will it add
another document to the same directory, but it will update info about that file.) or you could use your
left/right arrows to move the insert cursor around on the screen so you can, for instance, change the file name
to foot.txt to create a different file.

As we start to write more complicated and longer commands in our terminal, the up arrow is a great
shortcut so you don't have to spend lots of time typing.

Creating Folders

https://github.com/DHRI-Curriculum/glossary/blob/v2.0/terms/root.md
https://en.wikipedia.org/wiki/Touch_(Unix)

DHRI_fundamentals_completecurriculum.md 1/18/2022

10 / 35

OK, so we're going to be doing a lot of work during the Digital Humanities Research Institute. Let's create a
projects folder on our desktop, where we can keep all our work in one place.

First, let's check to make sure we're still in the Desktop folder with pwd:

$ pwd
/Users/your-username/Desktop

Once you've double-checked you're in Desktop, we'll use the mkdir or "make directory" command to make a
folder called projects:

$ mkdir projects

Now run ls to see if a projects folder has appeared. Once you confirm that the projects folder was created
successfully, cd into it.

$ cd projects
$ pwd
/Users/your-username/Desktop/projects

OK, now you've got a projects folder that you can use throughout the Institute. It should be visible on your
graphical desktop, just like the foo.txt file we created earlier.

Evaluation
What does the up arrow command do?

It quits the Terminal/GitBash.
It undoes my last command.
It inserts my last command.*
It shows me what folder I am working in.

Creating a Cheat Sheet
In this section, we'll create a text file that we can use as a cheat sheet. You can use it to keep track of all the
awesome commands you're learning.

Echo

Instead of creating an empty file like we did with touch, let's try creating a file with some text in it. But first,
let's learn a new command: echo.

DHRI_fundamentals_completecurriculum.md 1/18/2022

11 / 35

$ echo "Hello from the command line"
Hello from the command line

Redirect (>)

By default, the echo command just prints out the text we give it. Let's use it to create a file with some text in it:

$ echo "This is my cheat sheet" > cheat-sheet.txt

Now let's check the contents of the directory:

$ pwd
/Users/your-username/projects
$ ls
cheat-sheet.txt

OK, so the file has been created. But what was the > in the command we used? On the command line, a > is
known as a "redirect." It takes the output of a command and puts it in a file. Be careful, since it's possible to
overwrite files with the > command.

If you want to add text to a file but not overwrite it, you can use the >> command, known as the redirect and
append command, instead. If there's already a file with text in it, this command can add text to the file without
destroying and recreating it.

Cat

Let's check if there's any text in cheat-sheet.txt.

$ cat cheat-sheet.txt
This is my cheat sheet

As you can see, the cat command prints the contents of a file to the screen. cat stands for "concatenate,"
because it can link strings of characters or files together from end to end.

A Note on File Naming
Your cheat sheet is titled cheat-sheet.txt instead of cheat sheet.txt for a reason. Can you guess why?

Try to make a file titled cheat sheet.txt and observe what happens.

Now imagine you're attempting to open a very important data file using the command line that is titled
cheat sheet.txt

DHRI_fundamentals_completecurriculum.md 1/18/2022

12 / 35

For your digital best practices, we recommend making sure that file names contain no spaces—you can use
creative capitalization, dashes, or underscores instead. Just keep in mind that the macOS and Unix file systems
are usually pre-configured as cAsE-pReSeRvInG, which means that capitalization matters when you type
commands to navigate between or do things to directories and files. You may also want to avoid using
periods in your file names, as they sometimes can prompt you to confuse them with system files or file
extensions (e.g., the full name of a PDF file is usually file.pdf).

Using a Text Editor
The challenge for this section will be using a text editor, specifically Visual Studio Code (install guide here), to
add some of the commands that we've learned to the newly created cheat sheet. Text editors are programs
that allow you to edit plain text files, such as .txt, .py (Python scripts), and .csv (comma-separated values,
also known as spreadsheet files). Remember not to use programs such as Microsoft Word to edit text files,
since they add invisible characters that can cause problems.

Exercise
You could use the GUI to open your Visual Studio Code text editor—from your programs menu, via Finder or
Applications or Launchpad in macOS, or via the Windows button in Windows—and then click File and then
Open from the drop-down menu and navigate to your Desktop folder and click to open the cheat-
sheet.txt file.

Or, you can open that specific cheat-sheet.txt file in the Visual Studio Code text editor directly from the
command line! Let's try that by using the code command followed by the name of your file in the command
line. (Please note the command code prompts your computer to open Visual Code only if you have correctly
completed the software configuration during installation.)

Once you've got your cheat sheet open in the Visual Studio Code text editor, type to add the commands
we've learned so far to the file. Include descriptions about what each command does. Remember, this cheat
sheet is for you. Write descriptions that make sense to you or take notes about questions.

Save the file.

Once you're done, check the contents of the file on the command line with the cat command followed by the
name of your file.

Solution
Step 1

$ code cheat-sheet.txt

Step 2

$ cat cheat-sheet.txt
My Institute Cheat Sheet

https://github.com/DHRI-Curriculum/install/blob/v2.0/guides/visual-studio-code.md
https://github.com/DHRI-Curriculum/install/blob/v2.0/guides/visual-studio-code.md

DHRI_fundamentals_completecurriculum.md 1/18/2022

13 / 35

ls
lists files and folders in a directory

cd ~
change directory to home folder

...

Evaluation
What does effect does the following command produce?

$ echo "Hello! My Name is Mark!" > introduction.txt

It adds the line "Hello! My Name is Mark!" to the existing content of the introduction.txt file.
It checks whether the content of the introduction.txt file contains the line "Hello! My Name is
Mark!"
It replaces the content of the introduction.txt file with the line "Hello! My Name is Mark!"*
None of the above.

Creating Syllabus Content Using Markdown
Markdown allows us to format textual features like headings, emphasis, links, and lists in a plain text file using
a streamlined set of notations that humans can interpret without much training. Markdown files usually have a
.md extension. We'll be using Markdown to write a syllabus.

Markdown is a markup language for formatting text. Like HTML, you add markers to plain text to style and
organize the text of a document.

Markdown has fewer options for marking text than HTML. It was designed to be easier to write and edit.

In Markdown, we insert headings with a single hash mark like this:

My Syllabus Heading

A sub-heading (H2) heading uses two hash marks like this:

Readings

The lessons of this workshop were originally written in markdown. You can see here what they look like in
their raw, unrendered form.

Compare that with this—the source code for this lesson's web page, written in HTML here.

https://raw.githubusercontent.com/DHRI-Curriculum/git/v2.0/lessons.md
view-source:http://curriculum.dhinstitutes.org/workshops/git/lessons/

DHRI_fundamentals_completecurriculum.md 1/18/2022

14 / 35

Markdown is also arguably more sustainable and accessible than formats like .docx because of its simplicity
and related ability to be read across multiple platforms. Use of Markdown is also supported by document-
conversion tools like Pandoc that can change a markdown file to an .epub with one command entered into
your terminal.

Here are a few more key elements to get you ready to make your own syllabus in Markdown.

To provide emphasis, place asterisks around some text:

This text will appear italicized.
This text will appear bold.

For emphasis, you need to mark where it should start and where it should end, so you need astrisks at the
beginning and end of whatever text is being emphasized.

To create a bulleted list, put a hyphen at the beginning of each list item:

- Reading one
- Reading two
- Reading three

To create a link, put the anchor text (the text you will see) in square brackets and the URL in parentheses,
directly following the anchor text in brackets. Don't put a space between them:

I teach at [The University of Miami](www.miami.edu).

Paragraphs of text are denoted by putting a blank line between them:

This is a paragraph in markdown. It's separated from the paragraph below with a
blank line. If you know HTML, it's kind of like the <p> tag. That means that there
is a little space before and after the paragraph when it is rendered.

This is a second paragraph in markdown, which I'll use to tell you what I like
about markdown. I like markdown because it looks pretty good, if minimal, whether
you're looking at the rendered or unrendered version. It's like tidy HTML.

Creating a Syllabus file

To create a plain text file, we're going to switch to our text editor, Visual Studio Code, to create and edit a file
named syllabus.md and save it to our projects folder. The .md extension indicates that it is a Markdown
file.

In terminal, check to make sure you are in your projects folder. (Hint: use pwd to see what directory you are
currently in.)

https://pandoc.org/

DHRI_fundamentals_completecurriculum.md 1/18/2022

15 / 35

Next, open the syllabus.md file in Visual Studio Code using:

$ code syllabus.md

You should see a window appear that looks similar to this:

If Visual Studio Code does not open when you use the code command in your terminal, open it using the
Start Menu on Windows or Spotlight Search on macOS as you would any other software. Then click File >
Open File and use the dialog to navigate to the /Users/<your-name>/Desktop/projects/git folder and
create a syllabus.md file there.

We'll be typing our markdown into this file in the Visual Studio Code window. At any time, you can save your
file by hitting control + s on Windows or ⌘ + s on macOS. Alternatively, you can click the File menu on
the top right, then select Save from the dropdown menu.

Exercise
Use these five elements—headings, emphasis, lists, links, and paragraphs—to create a syllabus. Have a main
heading that gives the course title (one #), then subheadings for, at least, course info and readings. Use
emphasis (*) for book titles and try to get a list in there somewhere.

If you want to learn more, we highly recommend this Markdown cheatsheet to learn additional markdown
elements and add some extra features like images, blockquotes, or horizontal rules.

Example

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

DHRI_fundamentals_completecurriculum.md 1/18/2022

16 / 35

You can look at an example syllabus in raw text form here. When it's rendered by GitHub, it looks like this.
When editing the markdown file in Visual Studio Code, it might look like this:

Tips
1. Visual Studio Code also has a preview feature for your markdown. Hit the preview button on the top

right while editing your markdown file:

You'll get two side-by-side panels. Your markdown file will be on the left, and your rendered preview
will be on the right:

https://raw.githubusercontent.com/DHRI-Curriculum/git/main/sections/syllabus.md
https://github.com/DHRI-Curriculum/git/blob/main/sections/syllabus.md

DHRI_fundamentals_completecurriculum.md 1/18/2022

17 / 35

2. Remember to save your work—regularly!—with control + s on Windows or ⌘ + s on macOS.

Evaluation
Which best describes Markdown:

a software installed on my local machine
a language for formatting plain text files*
a language that can be read and rendered by some web-based platforms*
a version control software
a cloud-based software
refers to project folders as "repositories"

Introduction to HTML

Websites seem like these magical things that appear when we open our web browser (i.e. Chrome, Firefox,
Safari). We know that websites are hypertext, meaning that we can click between links, travelling from page to
page until we find what we need. What may be less obvious about websites is that, fundamentally websites
are plain text documents, usually written in HTML or another web-based markup language, such as XML or
XHTML.

Fun fact: More than 90% of all websites (whose markup language we know) use HTML (w3techs.com).

Hypertext Markup Language (HTML)
HTML is a markup language used to write web-based documents. It enables us to provide web browsers with
information about the content of a document. We can, for example, indicate that some part of our document
is a paragraph, image, heading, or link. The browser uses this information when displaying the document for
users.

https://w3techs.com/technologies/details/ml-html/all/all

DHRI_fundamentals_completecurriculum.md 1/18/2022

18 / 35

Markup Language vs. Programming Language
HTML is a markup language, not a programming language. Programming languages are used to transform
data, by creating scripts that organize an output of data based on a particular input of data. A markup
language is used to control the presentation of data.

For a practical example of this difference, we can think about tables. A programming language can help you
search through a table, understand the kinds of data the table includes, find particular data points, or
transform its content into other kinds of data, such as frequencies. A markup language would instead
determine the content, layout, and visual presentation of the table.

Fundamentally, then, a script or program is a set of instructions given to the computer. A document in a
markup language determines how information is presented to a user.

NOTE—Markup vs Markdown: Markdown and HTML are both types of markup languages; Markdown is a
play on words. Markup languages help format content.

Cascading Style Sheets (CSS)
CSS is usually used in conjunction with HTML. HTML tells the browser what the different parts of a document
are. CSS tells the browser what the parts of the document should look like. It is essentially a set of rules that
are applied when rendering an HTML document. Its name—Cascading Style Sheets—refers to the fact that
there is an order of precedence in how the browswer applies CSS rules to a document. More specific rules
overwrite less specific rules.

Where Does the Internet Come In?
Together, these languages can be used to write and style a website using a text editor (such as Visual Studio
Code) directly from your computer. No internet access needed.

However, internet access is necessary if you plan on making your website available to the public. Click here to
learn how to get your website from your local computer onto the internet.

In our activities during this workshop we will focus on building locally-hosted websites. These are websites
that you can open on your web browser, however, they only exist on your own device and are only accessible
to you. Locally-hosted websites are not yet on the internet.

Evaluation
True or False: The primary difference between markup languages and programming languages is that markup
languages are used to determine the format, appearance, and purpose of content, whereas programming
languages are used to transform data.

True*
False

Keywords
Do you remember the glossary terms from this section?

CSS

file:///c%3A/Users/Tarika/Dropbox/Tarika%202/Conferences%2C%20Research%2C%20CV/DHRI%2021/19-public.md
https://github.com/DHRI-Curriculum/glossary/blob/v2.0/terms/css.md

DHRI_fundamentals_completecurriculum.md 1/18/2022

19 / 35

HTML
Markdown
Programming Language

Opening Activity
Note: please use Firefox or Chrome. Safari will not allow you to complete this activity.

1. Open a web browser, preferably Firefox.
2. Go to any website. The example below is from tarikasankar.github.io.
3. Open the secondary menu (using a mouse, this would be the menu that opens when you right click on

the page; on Mac computers, this is usually a two-finger tap on the track pad, or you can press the
control button then click the track pad).

4. Select View Page Source from the dropdown menu.

What You Are Seeing
A second tab should open in your browser displaying the underlying code of the page. This is the code that is
used to make and render the page in your web browser.

https://github.com/DHRI-Curriculum/glossary/blob/v2.0/terms/html.md
https://github.com/DHRI-Curriculum/glossary/blob/v2.0/terms/markdown.md
https://github.com/DHRI-Curriculum/glossary/blob/v2.0/terms/programminglanguage.md
https://www.github.com/DHRI-Curriculum/install/blob/v2.0/guides/firefox.md
http://tarikasankar.github.io/

DHRI_fundamentals_completecurriculum.md 1/18/2022

20 / 35

In this workshop, we are going to learn how to read and write this code, and render it in the browser on your
local computer. At the end we will discuss the next steps for how you could host your new website, making it
available for browsing by others via the internet.

Basic Template for HTML

Below is a basic template for an empty HTML Document.

<!DOCTYPE html>
<html lang="en">

 <head>
 ...
 </head>

 <body>
 ...
 </body>

</html>

DHRI_fundamentals_completecurriculum.md 1/18/2022

21 / 35

HTML documents start with a DOCTYPE declaration that states what version of HTML is being used. This tells
the browser how to read the code below it to render the page. If the webpage were written with a different
markup language (i.e. XML, XHTML), it would tell you here.

After the DOCTYPE, we see the start of the Root Element. EVERYTHING—all content—that you want presented
on this page and all information about how you want that information to be organized and styled goes in the
root element, and it is demarcated by <html> and </html>.

The root element begins by indicating which language the document is written in; and in this basic template,
en tells us and the computer that we are writing in English.

Within the root element of the basic template above, you'll notice the two main sections of all HTML
documents: a head section (demarcated by <head> and </head>) and a body section (demarcated by <body>
and </body>).

The head section contains basic information about the file such as the title, keywords, authors, a short
description, and so on. This is also where you will link to your CSS stylesheet which describes how you want
the page styled—colors, fonts, size of text, and positioning of elements on the page.

The body section contains the content of the page, including paragraphs, images, links, and more, and
indicates how this content is to be structured on the page.

Exercise
Create a folder called htmlpractice in your projects folder (~/Desktop/projects/htmlpractice). Inside
that folder, create a new text file and save it as index.html.

Let's use the command line to create the new folder and file:

1. Open your terminal.

2. Navigate to your projects folder using this command:

$ cd ~/Desktop/projects

3. Create a new folder:

$ mkdir htmlpractice

4. Use your Visual Studio Code text editor to create a file called index.html: code index.html.

5. Paste the template above (starting with <!DOCTYPE html>) into the new file.

The index.html file is your default homepage for the website we are creating. This is an industry standard,
because web browsers tend to recognize the index.html page as the opening page to the directory that is
your website. See here for more explanation.

Once you've created your new file, open it with a web browser using your graphical user interface:

https://www.lifewire.com/index-html-page-3466505

DHRI_fundamentals_completecurriculum.md 1/18/2022

22 / 35

On macOS, click on the Finder in your dock (the apps at the bottom of the screen) and click on Desktop on
the left. From there, navigate to projects, then htmlpractice. Alternately, you can click the projects folder
icon on your Desktop and find it from there. If you're using a Mac and would prefer to use the command line,
you can also type open index.html from within your htmlpractice folder.

On Windows, click the projects folder icon on your desktop. Navigate to projects, then htmlpractice.
Double click the index.html file. If it does not open in a browser, right click the index.html icon and select
"Open with..." from the menu. Select Firefox or Google Chrome from the app list that appears.

What Happens?
When you open the empty template, you'll see only a blank web page. Open your secondary menu (right click
on Windows, hold control and click with macOS) and view the page source.

What Should Happen When I Open Each of my Two New Files?
When you "View Page Source," you should see the code for the basic template.

No content renders on the page, because there is no content in the template at this time.

Evaluation
Which one of these two HTML commands is also known as the "root element"?

<!DOCTYPE html>
<html lang="en">*

Keywords
Do you remember the glossary terms from this section?

Root Element

Tags and Elements
Tags and elements are the structuring components of html webpages.

Elements identify the different parts of a page, such as paragraphs, headings, titles, body text, images and
more. Elements are demarcated by tags which enclose the content of an element (ex. <head> and </head>
are tags that denote the head element of your page).

Tags demarcate elements in one of two ways. As with the paragraph element below, an element can have an
opening and a closing tag, with the content in between.

<p>This is a paragraph.</p>

<p>
 This is also a paragraph.
</p>

https://github.com/DHRI-Curriculum/glossary/blob/v2.0/terms/rootelement.md

DHRI_fundamentals_completecurriculum.md 1/18/2022

23 / 35

Elements which have an opening and closing tag can have other elements inside them. Inside the paragraph
element below is a element, which emphasizes the included text by making it bold.

<p>
 When I came home from school, I saw he had stolen my
chocolate pudding.
</p>

Other elements have self-closing tags as with the (image) element below. These tags are also called
void tags.

These elements don't require a separate closing tag. Closing tags aren't needed because you wouldn't add
content inside these elements. For example, it doesn't make sense to add any additional content inside an
image. It is common practice to end void tags like the one above with a / to mark the end of it.

Below is HTML that adds alternative text to an image—or text that describes the image. This information
added is an attribute—or something that modifies the default functionality of an element.

Adding alternative text to an image, as was done in this example, is vitally important. That information makes
the image more accessible to those viewing your site. For instance, users with poor vision who may not be
able to see your image will still understand what it is and why it's there if you provide alternative text
describing it.

If you look back at the basic template in your index.html file, you'll see that the main sections of your file
have opening and closing tags. Each of these main elements will eventually hold many other elements, many
of which will be the content of our website.

Evaluation
Which one of the following statements is correct:

Elements have opening and closing tags.*
Tags have opening and closing elements.

Keywords
Do you remember the glossary terms from this section?

Tag
Elements

https://github.com/DHRI-Curriculum/glossary/blob/v2.0/terms/tag.md
https://github.com/DHRI-Curriculum/glossary/blob/v2.0/terms/elements.md

DHRI_fundamentals_completecurriculum.md 1/18/2022

24 / 35

Paragraphs and Headings
Paragraphs and headings are the main textual elements of the body of your webpages. Because these contain
content that you want to organize and display on your webpage, these are entered in the body element.

The <h1>, <h2>, <h3>, etc. tags denote headings and subheadings, with <h1> being the largest and <h6> the
smallest.

The <p> tags denote paragraphs, or blocks of text.

<!DOCTYPE html>
 <html lang="en">

 <head>
 <title>A boring story</title>
 </head>

 <body>
 <h1>
 Cleaning my boiler
 </h1>
 <p>
 When I got to my basement that day, I knew that I just had to clean my
boiler. It was just too dirty. Honestly, it was getting to be a hazard. So I got
my wire brush and put on my most durable pair of boiler-cleaning overalls. It was
going to be a long day.
 </p>
 </body>

</html>

Note that the <title> is in the <head> element, which is where information about the webpage goes. The
title doesn't appear on the page, but instead elsewhere in the browser when the page is displayed. For
example, in Chrome, the title appears on the tab above the navbar.

DHRI_fundamentals_completecurriculum.md 1/18/2022

25 / 35

Note also that the elements and tags used in HTML have meaning. They provide information about the
structure of a web page, showing how its parts work together. Those who make use of assistive technologies
such as screen readers rely on this semantic information to navigate the page. Thus, it's important to use
elements such as headers only when the information being marked calls for it. Making text large and/or bold
for visual effect should be done using CSS. The Mozilla Developer Network has some good introductory
information on semantic HTML.

Exercise
Using your text editor, add the following to your index.html:

Title
Heading
Paragraph

Then, re-save the file. Open it in your browser again or refresh the page if still opened.

What do you notice about how the information is organized in the webpage? In other words, where are the
title, heading, and paragraph text?

What Should You See?

https://developer.mozilla.org/en-US/docs/Glossary/Semantics#Semantics_in_HTML

DHRI_fundamentals_completecurriculum.md 1/18/2022

26 / 35

The heading should appear at the top of the page, followed by the paragraph text. The heading text should
be larger. The title should appear in the browser window tab.

Evaluation
If I wanted to indicate that "About" is a subheading in my page, which element should I use?

<head>
<h2>*

Links
Links are the foundation of the World Wide Web, and thus are an important component of most websites.
Hyperlinking text enables users to move between the different webpages on your site (sometimes in the form
of a menu or navigation bar), or connect to other resources or information on other websites.

The <a> tag, or anchor tag, creates a link to another document. You can use the <a> tag to link to other
documents or webpages you created for the same site or to documents located elsewhere on the web. You
can also use it to link to a particular location on a page—we'll see an example of this in the section on Classes
and IDs.

Option One: Relative Links
Relative links take the current page as an origin point and search for other files within the same folder or
directory. This method is useful for creating links to pages within your own site.

The following appears as a link to the about.html page in the same folder as index.html:

DHRI_fundamentals_completecurriculum.md 1/18/2022

27 / 35

About

On your webpage it will appear as:

About

This link is asking the browser to look for a file titled about.html in the same folder. If a file named
about.html is not in the same folder, clicking the link will result in a 404 ("Page Not Found") error.

Option Two: Absolute Links
An absolute link includes information that allows the browser to find resources on other websites. This
information includes the site domain—such as google.com—and often the protocol—such as http or https.

Google

On your webpage it will appear as:

Google

This pathway is directing your browser to look online for this text document at the URL address provided.

More on Links
Each example above includes an href—a hypertext reference—which is an example of an attribute.
Attributes offer secondary information about an element.

The <a> tag, or anchor tag, creates a link. The text within the <a> and tags, the anchor text, is what a
visitor to the site will see and can click on. The href= attribute tells the browser where the user should be
directed when they click the link.

There is another technical difference between the two options above.

Relative vs. Absolute Links: When to Use Which One
Use relative links when referring to pages on your own site. The main advantage of using relative links to
pages on your site is that your site will not break if it is moved to a different folder or environment.

Exercise
1. Create a new text file called about.html in your htmlpractice folder. Copy over the HTML from your
index.html file, but change the text in the <h1> element to "About."

2. In your index.html file, add a relative link leading to your "About" page.
3. Also add a relative link from your "About" page to your index.html page. In this link, call your
index.html page "Home" (Reminder: index.html is the default homepage)

4. Lastly, include an absolute link to a page of your choosing. Remember that an absolute link includes the
protocol (for example, http:) and also a domain (for example, cuny.edu), such as

https://www.google.com/

DHRI_fundamentals_completecurriculum.md 1/18/2022

28 / 35

http://cuny.edu/about.
5. Re-save your text files and reopen or refresh them in your browser.

Check If It Worked
When your pages are updated, you should be able to navigate from your "Home" page to your "About" page,
and vice versa. You should also be able to navigate to the external web page.

Evaluation
Which one of the following options is a relative link?

The New York Times
Digital Project*

Keywords
Do you remember the glossary terms from this section?

Attributes

Images
Images are another important component of websites. Sometimes these just help bring your website to life,
but other times they can help communicate information to users.

Images are created with the tag. Similar to the <a> tag, requires an attribute, in this case src.
The src attribute stands for "source" and communicates secondary information to your browser that
identifies and locates the image. Unlike many other tags, the tag does not need to be closed, making it
an example of a void tag.

The following element pulls in an image located in the same folder as the .html file:

The same rules apply here as with the href attribute: if the image is not located in the same folder as the
document you are writing in, the browser won't find it. If the browser cannot find an image resource, you will
see a broken image icon, such as this one from Chrome:

https://github.com/DHRI-Curriculum/glossary/blob/v2.0/terms/attribute.md

DHRI_fundamentals_completecurriculum.md 1/18/2022

29 / 35

Note: Some sites use a lot of images. When this is the case, it can be helpful to keep images in a separate
folder within your site's structure. To enable the browser to find an image in that case, just add the directory in
front of the file name. For example, if you have a folder named images in the same folder as your index.html
file, and scream.jpeg is in that folder, you'd change the void tag above to <img src="images/scream.jpeg"
/>.

Making Images Accessible
As briefly noted earlier, alternative text, or alt text, is descriptive "text associated with an image that serves the
same purpose and conveys the same essential information as the image" (see Wikipedia Manual of
Style/Accessibility/Alternative Text for Images for more), and is important for ensuring content conveyed by
images is accessible to all.

To add alternative text to an image, you add an additional attribute, alt followed by your descriptive text. For
example:

For more information about using alt text, see what the Social Security Administration has to say.

What Images May I Use On My Site?
If you're planning to use images that you did not take or make yourself, you'll need to use "public domain" or
"open license" images.

This guide by the OpenLab at City Tech includes more information on licensure and a list of places where you
can find reuseable images.

Exercise
Download and save an image from the web, or move an image from your computer into the same folder as
your index.html file.

Tip: Give the file a simple name. Also, the name cannot have spaces. A good practice is to use either dashes
or underscores where there would otherwise be spaces. For example: this-is-an-image.jpg or
this_is_an_image.jpg.

Using the code above as a reference, add that image into your index.html file, re-save the file, and re-open
or refresh the page in your browser. Your image should now appear on the page.

Evaluation
True or False: Does including "alt text" in websites improve their accessibility?

True*
False

Conventions

https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Accessibility/Alternative_text_for_images
https://www.ssa.gov/accessibility/files/SSA_Alternative_Text_Guide.pdf
https://openlab.citytech.cuny.edu/blog/help/following-copyright-guidelines-for-images/

DHRI_fundamentals_completecurriculum.md 1/18/2022

30 / 35

As we’ve gone through the different components of creating a webpage, you likely have noticed some
common conventions or industry standards for creating a webpage using HTML. Can you guess any of these?

Here are a few examples:

Some tags are self-closing, while others require a closing tag. Self-closing tags are called void tags, and
are generally self-closing because you wouldn't need or want to add another element within a tag. They
also generally end with a forward slash (/) to mark the end of the tag.
Use lower case. While HTML is not case sensitive, it makes scanning the code easier, and makes it look
more consistent.
Your code should be nested. This is not a technical necessity either—blank space has no meaning in
html. However, this makes it easier to scan the code quickly, which is particularly helpful when you run
into errors!

Exercise: Create a website
In this exercise, we will begin creating a website for your personal portfolio or course. Using the tags we've
just reviewed, and two additional ones (see below), we will make a barebones website that provides
information about your academic profile and/or courses.

The first step is to create a new folder called website in your projects folder on your desktop. Create an
index.html as well as an about.html file inside that folder. These will be the landing page of your site, and a
supplemental page that provides information about your Digital Humanities Institute's organizers.

Add HTML to your index.html file. This page should include the following:

Doctype
Root element
Head and a body
Title for the page
One heading
One paragraph
One image with alt text
A menu or navigation bar that links to your Home and About pages

Think about the order of your content as you assemble the body of your page. Don't worry about getting the
content just right. The important aspect of this exercise is to review the structure of a webpage, and practice
creating a webpage.

Additional Tags
Here are two additional tags that might come in handy in assembling your page:

To make a list, you open and close it with the tags, and each item is an enclosed tag:

 Item 1
 Item 2

DHRI_fundamentals_completecurriculum.md 1/18/2022

31 / 35

 Item 3

The HTML above will produce an unordered (bulleted) list. To create an ordered (numbered) list instead, just
substitute and for and .

(This may come in handy when making your menu or navigation bar.)

To make a line break or give space between different elements:

CSS Basics
CSS stands for Cascading Style Sheets. This language works in coordination with HTML, but is its own
language with its own rules and terminology. In contrast to HTML, which is responsible for the content of the
page, CSS is responsible for the presentation of the page.

Examples of what CSS can help you determine include:

What background color you want to use for the page or a paragraph.
What font or font size you want for your headings or your normal text.
How large you want the images, and whether you want them aligned center, left, or right.
Where elements appear on the page.
Whether elements are visible to a user or not.

Evaluation
Is CSS a markup language or a programming language?

Markup Language*
Programming Language

Integrating CSS and HTML

In order for CSS to inform the style of the content on the page, it must be integrated with your HTML. CSS can
be integrated into your HTML in three ways:

1. inline
2. internal
3. external (recommended)

Option 1: Inline
Inline styling adds CSS directly into the HTML of a page to adjust the style of particular parts of a page.

DHRI_fundamentals_completecurriculum.md 1/18/2022

32 / 35

For example, if you want the text of your first paragraph to be red, but the text of your second paragraph to
be blue:

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>About</title>
 </head>

 <body>
 <p style="color: red">
 Content of paragraph
 </p>
 <p style="color: blue">
 Content of paragraph
 </p>
 </body>
</html>

Option 2: Internal
Internal styling also adds CSS directly into the HTML, but keeps it separate from the content code of the page
by adding it into the head using the <style> tag. When using internal styling you are providing styling rules
for the entire page. For example, if you want all headings to be blue:

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>About</title>
 <style>
 h1 {
 color: blue;
 }
 </style>
 </head>

 <body>
 <h1>
 Heading One
 </h1>
 <p>
 Content of paragraph
 </p>
 <h1>
 Heading Two
 </h1>
 <p>
 Content of paragraph
 </p>

DHRI_fundamentals_completecurriculum.md 1/18/2022

33 / 35

 </body>
</html>

Option 3: External (Recommended)
External styling creates a completely separate document for your CSS that will be linked to your HTML in the
head section of your HTML document using the code below. This separate document is called a stylesheet and
is often named style.css. The document is linked through a void <link> tag that lives inside the parent
<head> tag. Its href attribute is a relative link to the document somewhere in relation to the document that
references it.

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>CSS Example</title>
 <link rel="stylesheet" href="style.css" />
 </head>

 <body>
 ...
 </body>
</html>

Best Practices
It's best practice to use Option 3, external styling, for a number of reasons:

1. It helps us remember what each language focuses on: HTML is for content, CSS is for styling. (This is
sometimes referred to as the principle of "separation of concerns")

2. It helps us maintain consistency across the various pages of our site as multiple HTML files can link to
the same stylesheet.

3. Because multiple HTML files can link to the same CSS file, it's not necessary to write the same CSS code
multiple times. Once suffices. (This is sometimes referred to as the "Don't Repeat Yourself" principle, or
simply DRY.)

Option 3, external styling, is preferred by most web developers because it's more manageable and because it
lends itself to greater consistency across the entire site.

Exercise
Create a blank stylesheet using the command line (following option 3, external styling, described above). In
your index.html document, link to your style sheet and re-save the file.

To link your stylesheet with your index.html file, insert the following code into the head element of that
index.html file:

<link rel="stylesheet" href="style.css" />

https://adamwathan.me/css-utility-classes-and-separation-of-concerns/
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

DHRI_fundamentals_completecurriculum.md 1/18/2022

34 / 35

Evaluation
Is the following code-snippet an example of inline styling or internal styling?

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>Homepage</title>
 <style>
 h1 {
 font-family: monospace;
 }
 p {
 font-family: fantasy;
 }
 </style>
 </head>

 <body>
 <h1>
 Online Library for All!
 </h1>
 <p>
 Free books here!
 </p>
 </body>
</html>

Inline Styling
Internal Styling*

Rule Sets
CSS is based on selectors and declarations, which together form rule sets (or just "rules"). Rule sets comprise
an external styling file with a .css extension. Here is the contents of a sample .css file:

h1 {
 color: orange;
 font-style: italic;
}

p {
 font-family: sans-serif;
 font-style: normal;
}

#navbar {

DHRI_fundamentals_completecurriculum.md 1/18/2022

35 / 35

 background-color: yellow;
 padding: 80px;
}

.intro {
 font-family: arial;
 background-color: grey;
 color: dark-grey;
}

The first rule (which starts with the h1 selector) applies to all <h1> tags on each page where your HTML
document links to your stylesheet, and changes the font style and display of those headings.

The lines within the curly braces (i.e. { ... }) are called declarations, and they change the formatting of the
elements in the HTML document. Each line in the declaration sets the value for a property and ends with a
semicolon (;).

Note the different syntax being used to select items for for styling with rule sets. The bottom two selectors are
used to apply rule sets to IDs and classes. In general, adding classes and IDs to HTML elements allows for
more specific styling—more on these soon!

Exercise
Copy and paste the CSS rules above into your style.css file and re-save the file. Then open or refresh your
index.html file in your browser and see what happens.

What should happen?

The formatting of the text on your page should change accordingly. Your <h1> should be orange and italic,
for example.

What are some other rules you might set for different HTML elements? Do a quick Google search for a CSS
rule that changes the appearance of your page, such as putting a border around an element.

Evaluation
How do we associate a CSS file with an HTML page?

By including a link to the CSS file in the HTML page's <head> element.*
By putting the CSS file in the same folder as the HTML page.

Keywords
Do you remember the glossary terms from this section?

CSS Selectors
Class
ID

https://github.com/DHRI-Curriculum/glossary/blob/v2.0/terms/cssselectors.md
https://github.com/DHRI-Curriculum/glossary/blob/v2.0/terms/class.md
https://github.com/DHRI-Curriculum/glossary/blob/v2.0/terms/id.md

